INTRODUCTION TO POPULATION MODELS

Yale University

Cory Merow

Ecological responses to global change

Persistence

Plant Distributions Leaning Upslope

Decline

Increase

Invasive Garlic Mustard

Demography

What is Population Ecology?

- Understand processes that govern abundance
 - Extrinsic (Density Independent)
 - Intrinsic (Density Dependent)
- Forecast how abundance might change
 - Population viability analysis
- Understand (st)age structure in populations

Population Growth (unstructured)

An open population dN/dt = Birth – Death + Immigration - Emmigration

Population Growth (unstructured)

An open population dN/dt = Birth – Death + Immigration - Emmigration

Density Dependence dN/dt = r *N * (K-N)/K

Age Structured Populations

Leslie Matrix

Elements of Leslie Matrix (L)

 F_x – Age-specific Fecundity × age-specific survival

 $F_x = S_x m_{x+1}$

S_x –Age-specific Survival

Population Projection

 $N_{t+1} = L \times N_t$

Stage Structured Models

Stage Structured Models

 $\begin{pmatrix} 0 & F_2 & F_3 & 0 \\ G_1 & P_2 & 0 & 0 \\ 0 & G_2 & P_3 & 0 \\ 0 & 0 & G_3 & P_4 \end{pmatrix}$

Stage Structured Models

Size class borders

- 'expert judgment'
- Algorithm to simultaneously minimize sample and distribution errors (Moloney 1986)
- Stage classes with significantly different vital rates (survival, growth, and/or reproduction)
- No size class borders

EigenAnalysis

- Eigenvalues
 - dominant = asymptotic growth rate at Stable Age Distribution
- Stable Age Structure
 - right eigenvector
- Reproductive Value
 - left eigenvector
- Sensitivities
 - how λ varies with absolute change in matrix elements (e.g. add .1)

Elasticities

- how λ varies with proportional change in matrix elements (e.g add 1%)
- Damping ratio
 - rate population approaches equilibrium

$$\rho = \frac{\lambda_1}{|\lambda_2|}$$