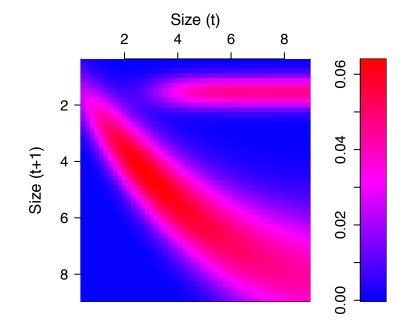
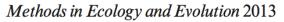
AN INTRODUCTION INTEGRAL PROJEC MODELS (IPMS)

Cory Merow



Methods in Ecology and Evolution



British Ecological Society

doi: 10.1111/2041-210X.12146

REVIEW

Advancing population ecology with integral projection models: a practical guide

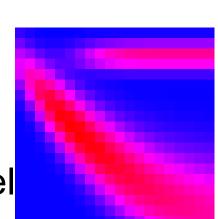
Cory Merow^{1,2}*, Johan P. Dahlgren^{3,4}, C. Jessica E. Metcalf^{5,6}, Dylan Z. Childs⁷, Margaret E.K. Evans⁸, Eelke Jongejans⁹, Sydne Record¹⁰, Mark Rees⁷, Roberto Salguero-Gómez^{11,12} and Sean M. McMahon¹

¹Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD 21307 Edgewater, MD 21307-0028, USA; ²Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; ³Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden; ⁴Department of Biology and Max-Planck Odense Center on the Biodemography of Aging, University of Southern Denmark, Odense, Denmark; ⁵Department of Zoology, Oxford University, Oxford, UK; ⁶Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; ⁷Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK; ⁸Laboratory of Tree-Ring Research and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA; ⁹Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; ¹⁰Harvard University, Harvard Forest, Petersham, MA, USA; ¹¹Max Planck Institute for Demographic Research, Evolutionary Demography laboratory, Rostock, Germany; and ¹²Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Qld, Australia

IPMs

Process-based demography:

- Accurate stage structure
- Size (t+1) Decompose life history to desired level
- Link vital rates to covariates
- Heterogeneity among individuals



0.79

Size (t+1)

0.29

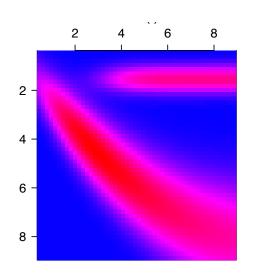
0.68

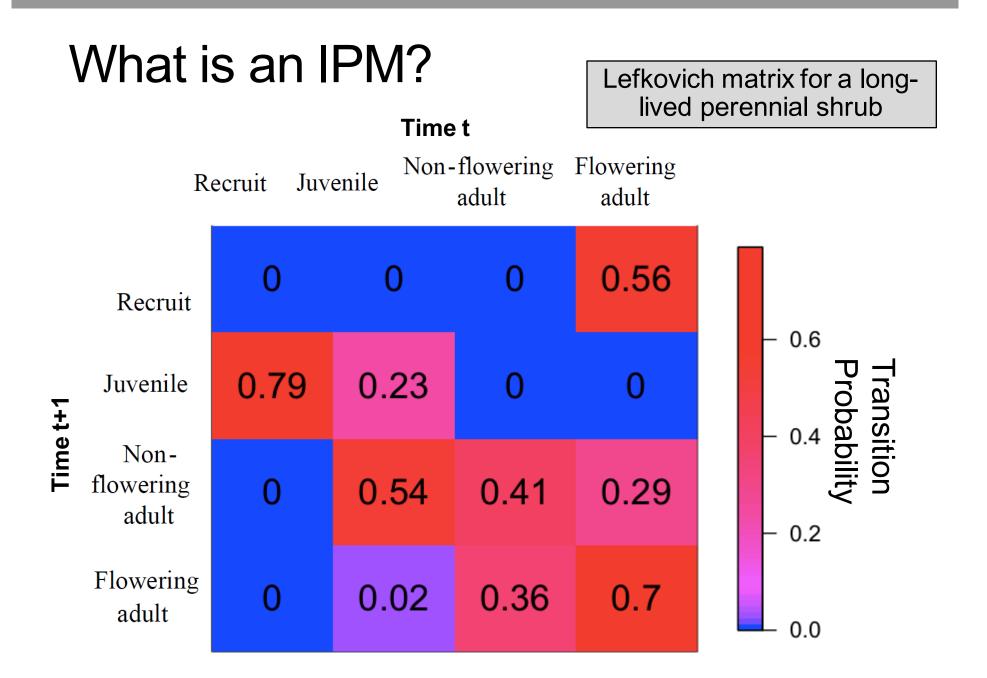
0.51

0.45

0.29

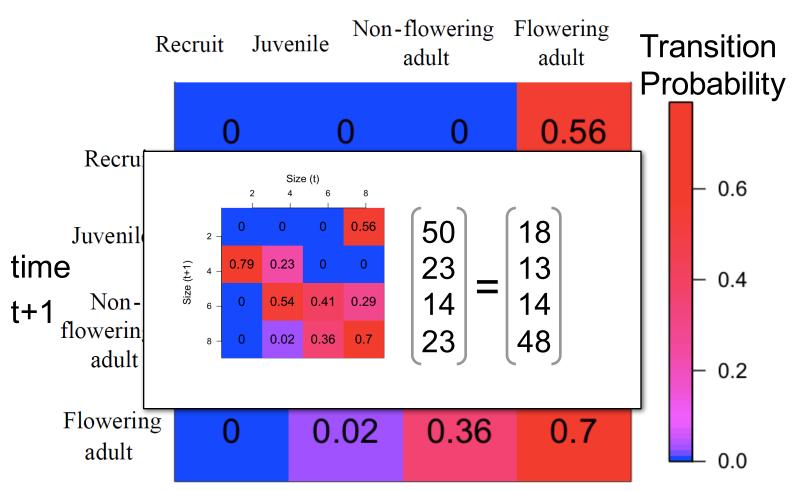
0.7

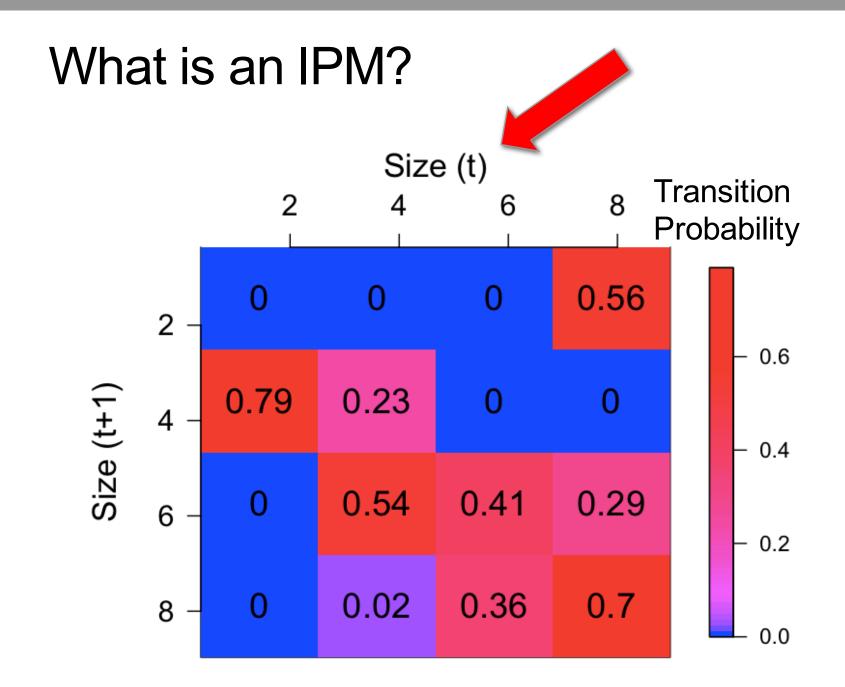




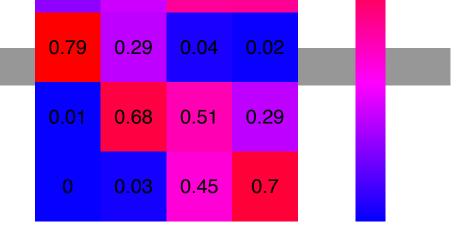
What is an IPM?

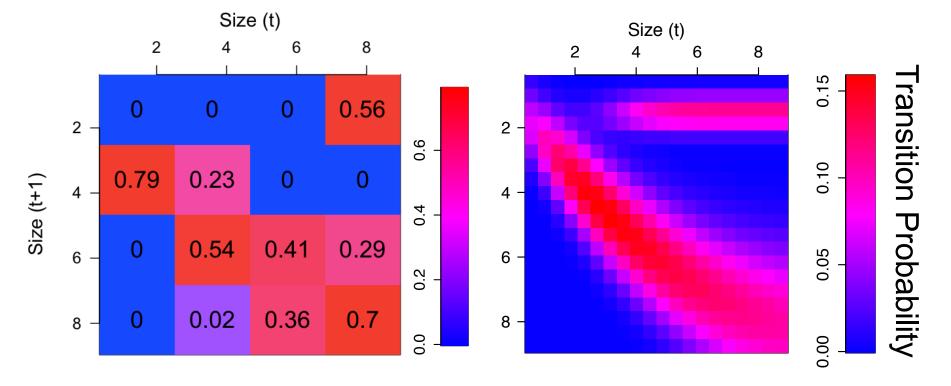
time t

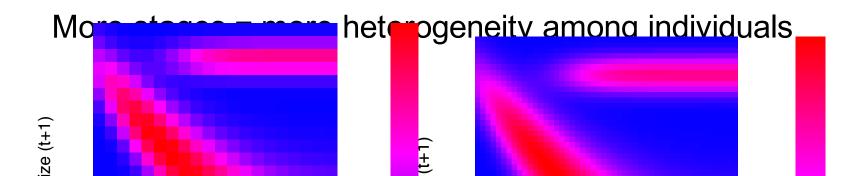


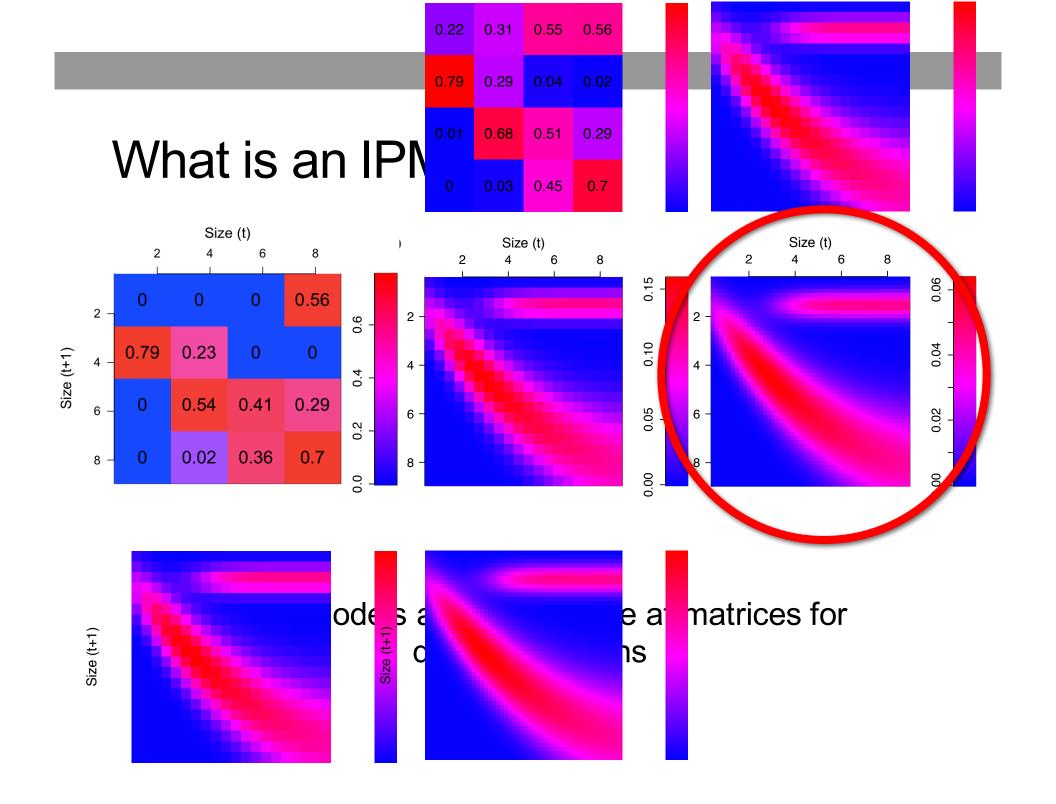


What is an IPM?

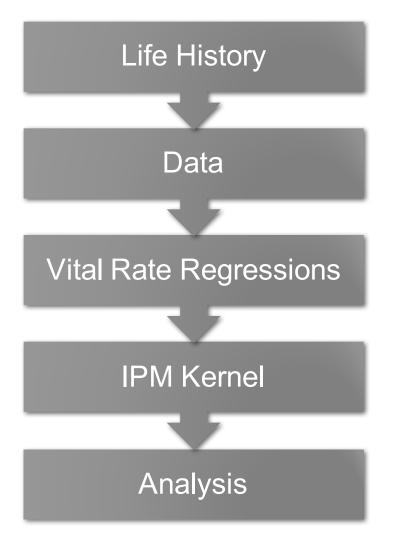


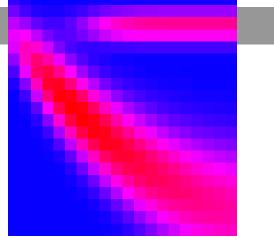


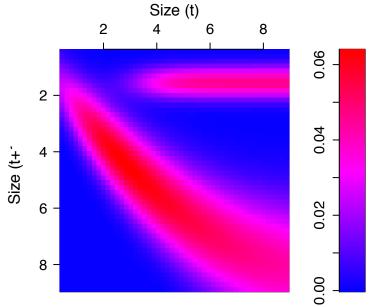


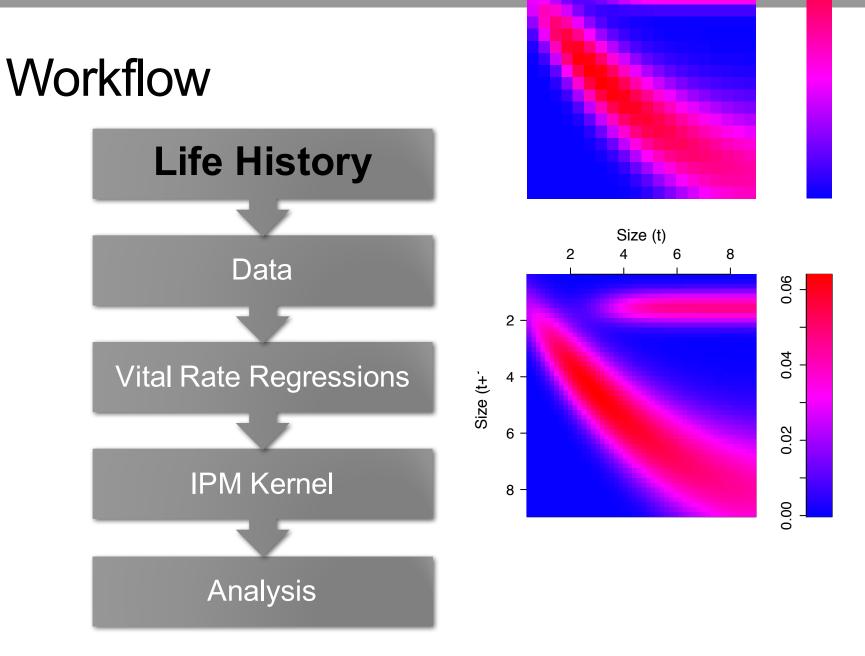


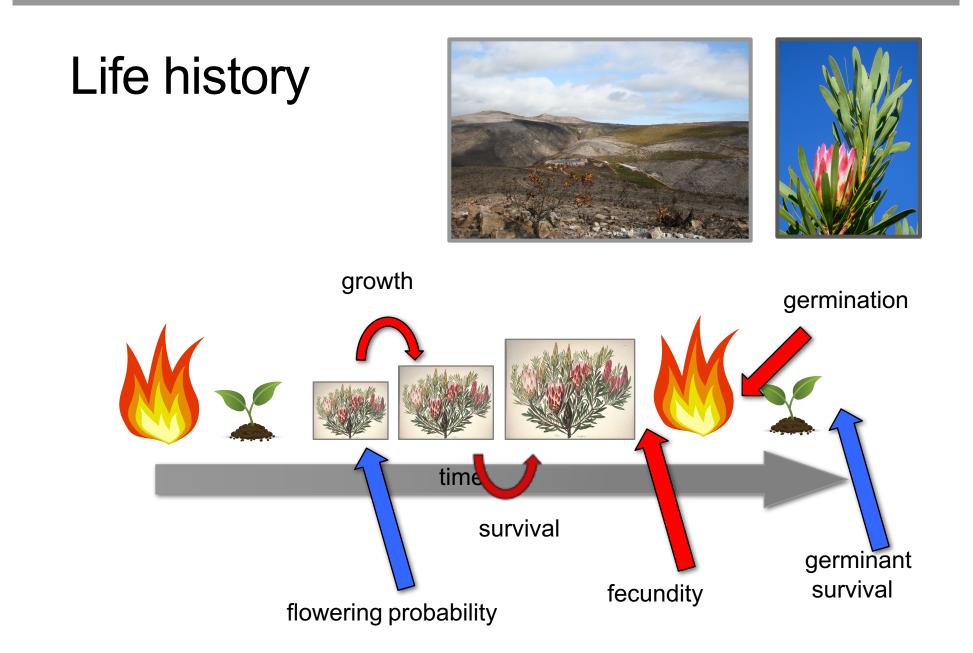
Workflow



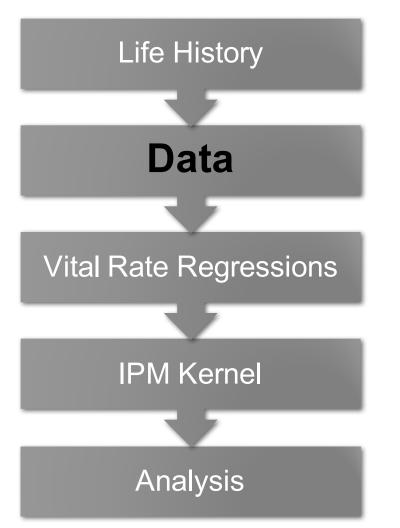


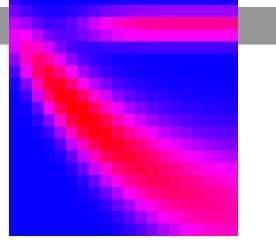


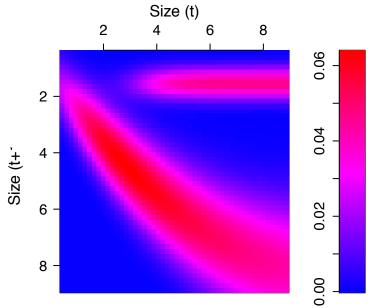




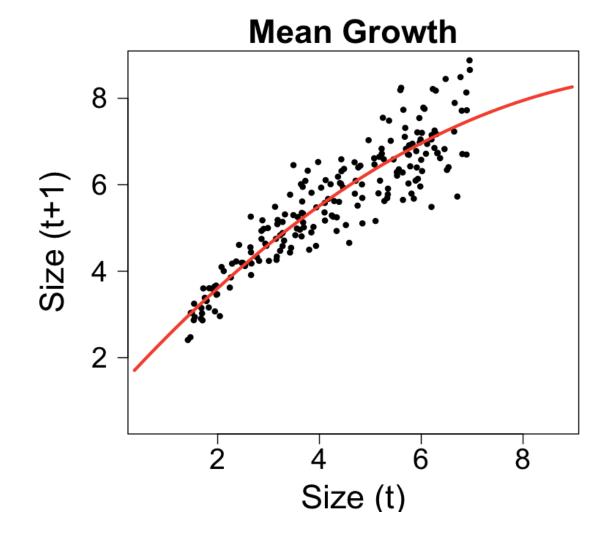
Workflow





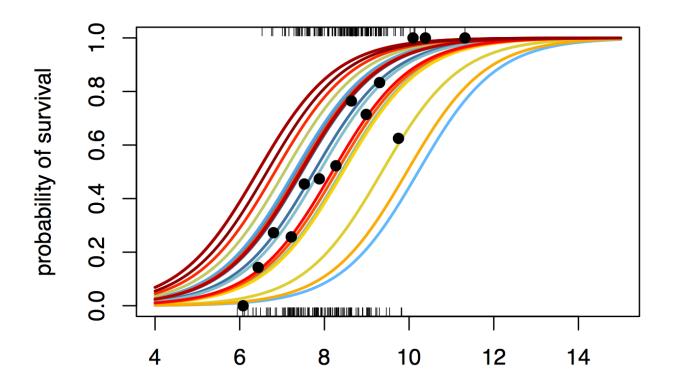


Data: Growth

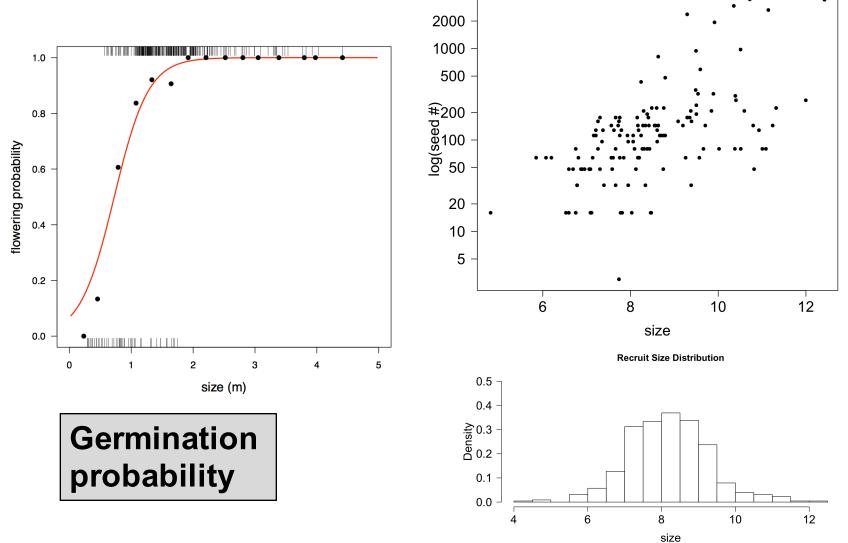


Data: Survival

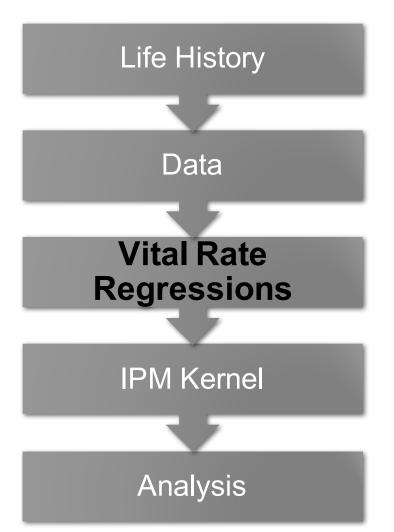
Survival curves for each plot

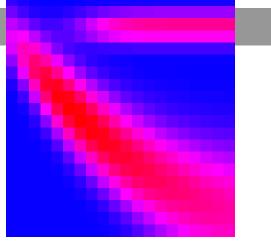


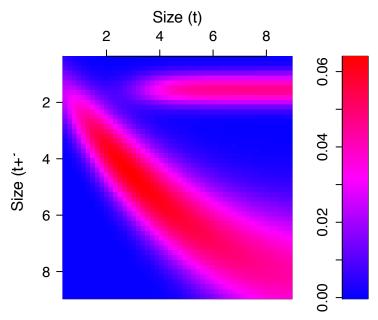
size

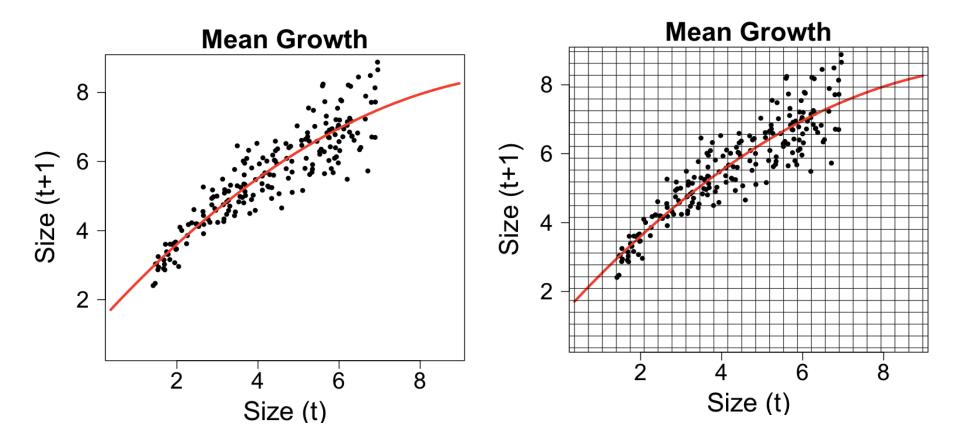


Workflow

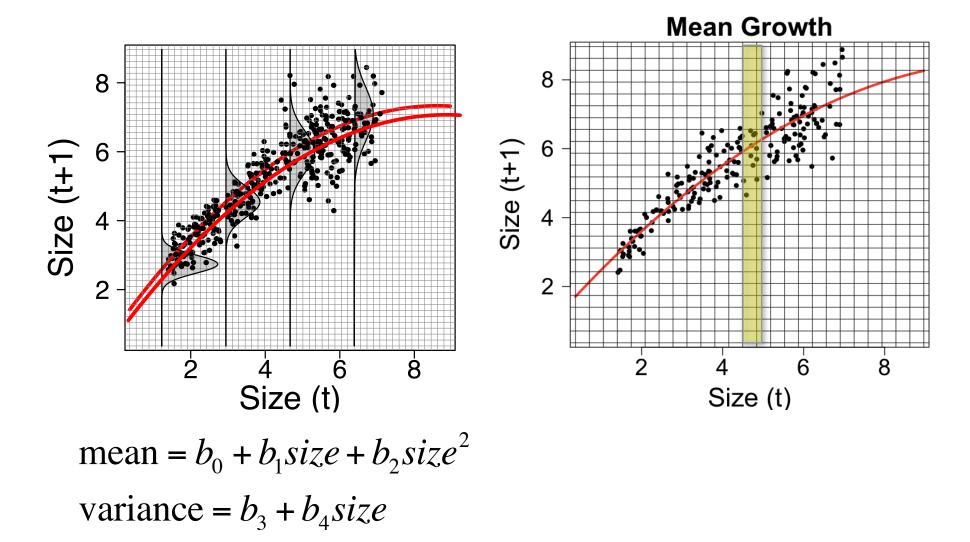


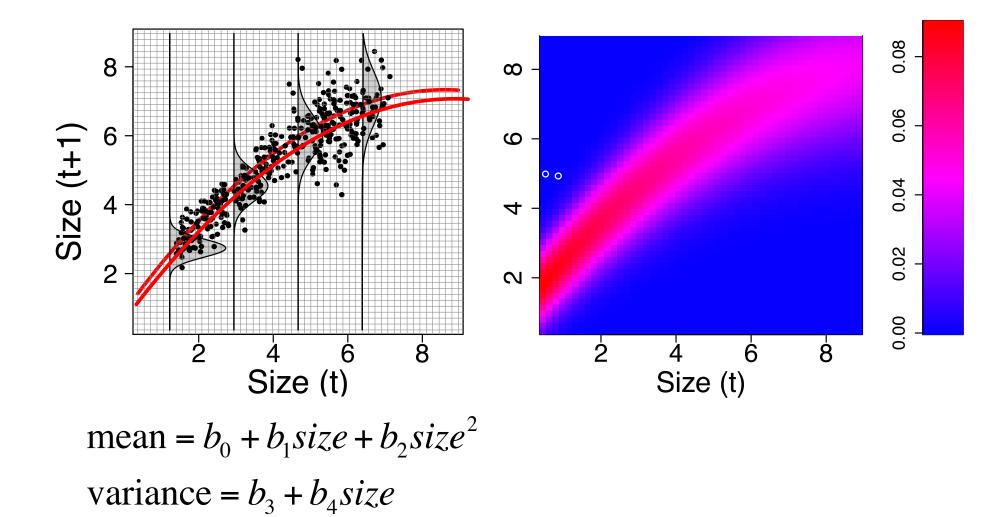


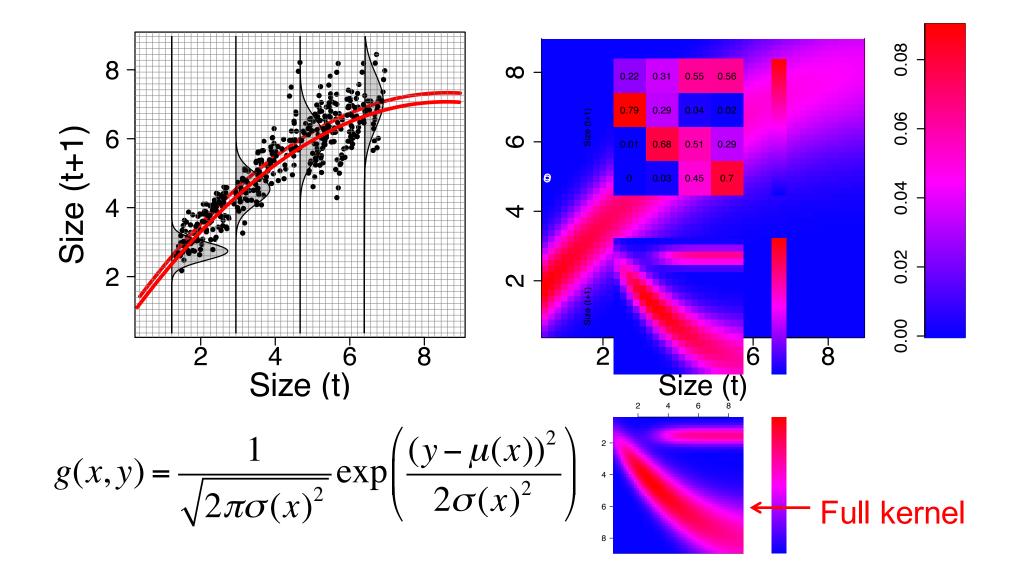




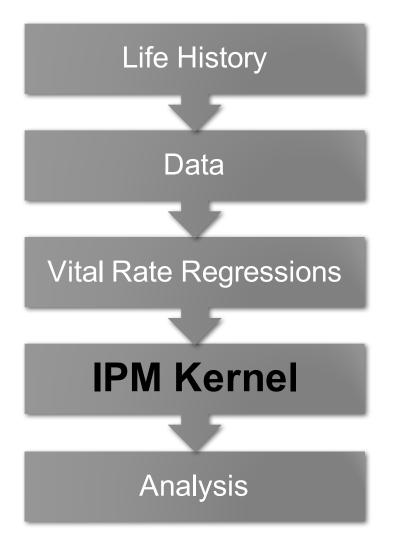
 $mean = b_0 + b_1 size + b_2 size^2$

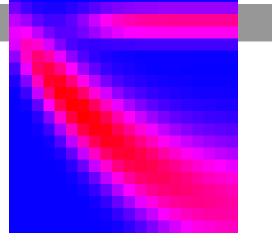


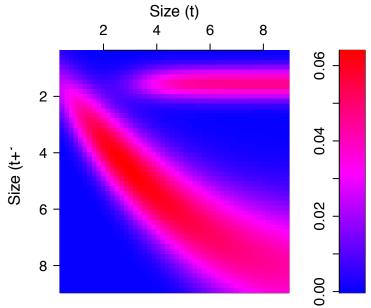




Workflow







• t = time

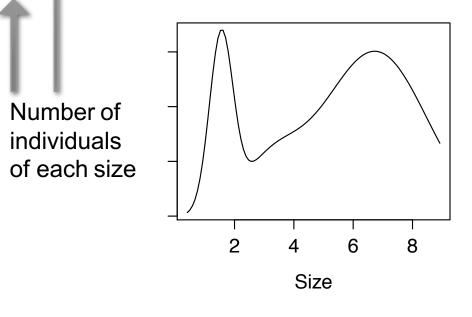
• x = size at t

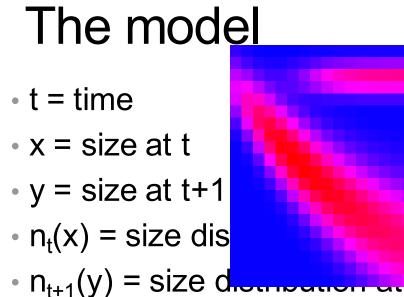
• y = size at t+1

• $n_t(x)$ = size distribution at t

• $n_{t+1}(y)$ = size distribution at t+1

K(x,y) = full kernel





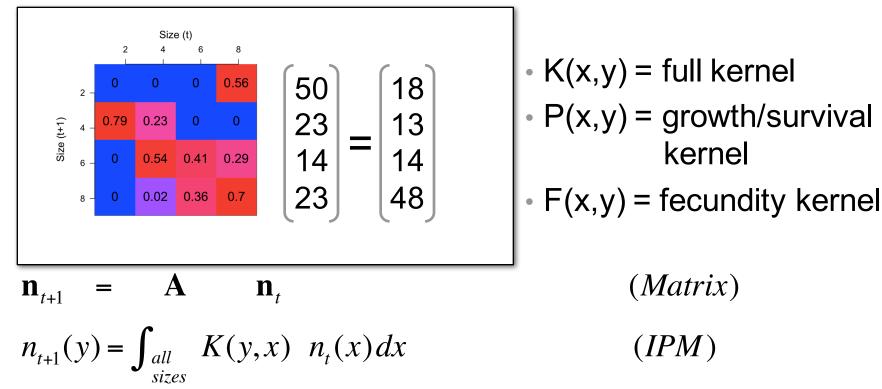
Size dictine care and a size (t) Size (t) 2 4 6 8 2 4 6 8 2 4 6 9 0 0 0 00 000 000

- t = time
- x = size at t
- y = size at t+1
- $n_t(x) = size distribution at t$
- n_{t+1}(y) = size distribution at t+1

$$\mathbf{n}_{t+1} = \mathbf{A} \quad \mathbf{n}_t$$
$$n_{t+1}(y) = \int_{\substack{all \\ sizes}} K(y, x) \quad n_t(x) dx$$

- K(x,y) = full kernel
- P(x,y) = growth/survival kernel

(Matrix) (IPM)



- t = time
- x = size at t
- y = size at t+1
- $n_t(x) = size distribution at t$
- n_{t+1}(y) = size distribution at t+1

- K(x,y) = full kernel
- P(x,y) = growth/survival kernel

 $\mathbf{n}_{t+1} = \mathbf{A} \quad \mathbf{n}_{t} \qquad (Matrix)$ $n_{t+1}(y) = \int_{all \\ sizes} K(y, x) \quad n_{t}(x) dx \qquad (IPM)$ $n_{t+1}(y) = \int_{all} \left[P(x, y) + F(x, y) \right] n_{t}(x) dx$

• t = time

• x = size at t

y = size at t+1

• $n_t(x) = size distribution at t$

n_{t+1}(y) = size distribution at t+1

K(x,y) = full kernel

 $\mathbf{n}_{t+1} = \mathbf{A} \quad \mathbf{n}_{t} \qquad (Matrix)$ $n_{t+1}(y) = \int_{all sizes} K(y, x) \quad n_{t}(x) dx \qquad (IPM)$ $n_{t+1}(y) = \int_{all sizes} \left[P(x, y) + F(x, y) \right] n_{t}(x) dx$

 $size(y)_{t+1} = \int_{all \ sizes} [growth(size \ x \rightarrow y) + offspring(size \ x \rightarrow y)] size(x)_t dx$

We need functions for...

- Growth
- Survival
- Reproduction

We have the option of splitting these in to finer detail if the data are available and the life history requires it

Life History

$$n(y,t+1) = \int_{\Omega} \left[P(x,y) + F(x,y) \right] n(x,t) dx$$

P(x,y) = (survival probability at size x) * (growth from x to y)= s(x) * g(x,y)

Life History

$$n(y,t+1) = \int_{\Omega} \left[P(x,y) + F(x,y) \right] n(x,t) dx$$

P(x,y) = (survival probability at size x) * (growth from x to y)= s(x) * g(x,y)

Life History

$$n(y,t+1) = \int_{\Omega} \left[P(x,y) + F(x,y) \right] n(x,t) dx$$

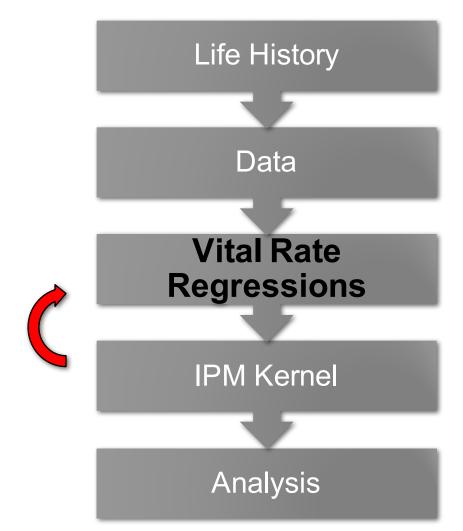
P(x,y) = (survival probability at size x) * (growth from x to y)= s(x) * g(x,y)

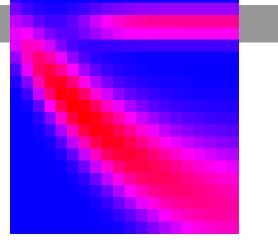
Life History

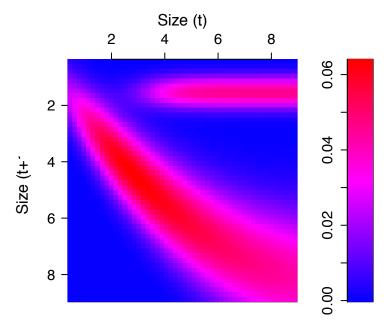
$$n(y,t+1) = \int_{\Omega} \left[P(x,y) + F(x,y) \right] n(x,t) dx$$

P(x,y) = (survival probability at size x) * (growth from x to y)= s(x) * g(x,y)

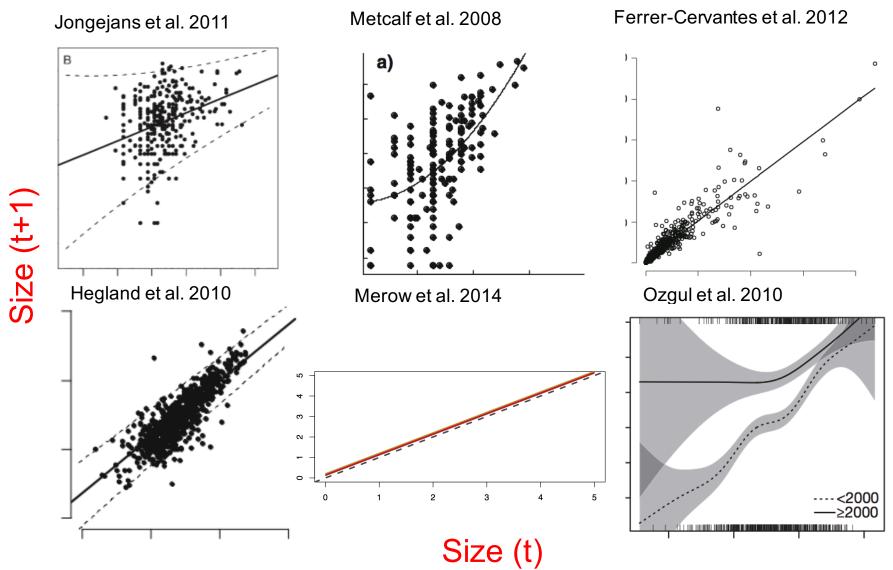
$$F(x,y) = (mean \# seeds of size x parent) * (establishment probability)(probability of size y offspring from size x parent) = f_{seeds}(x) * p_{estab} * f_{recruit}(y)$$



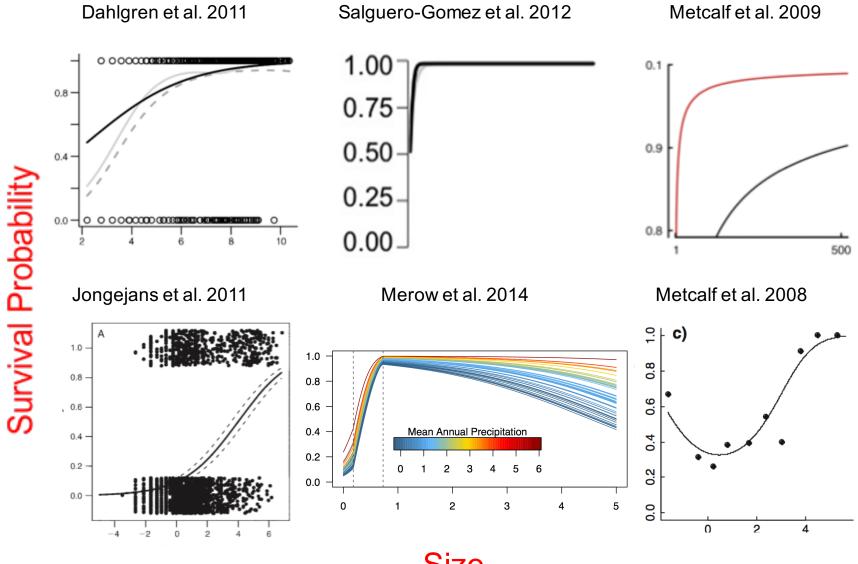




Vital Rate Regression: Growth -g(x,y)

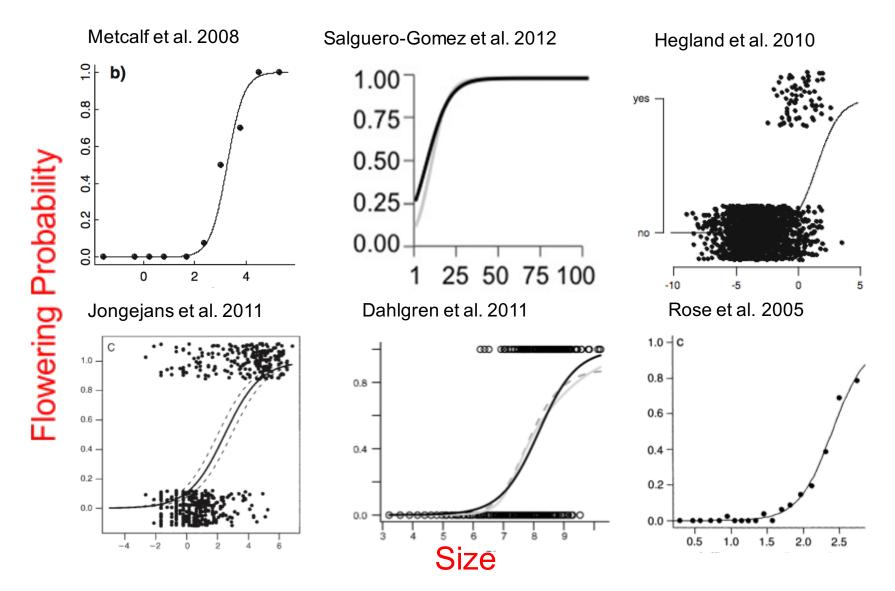


Vital Rate Regression: Survival - s(x)

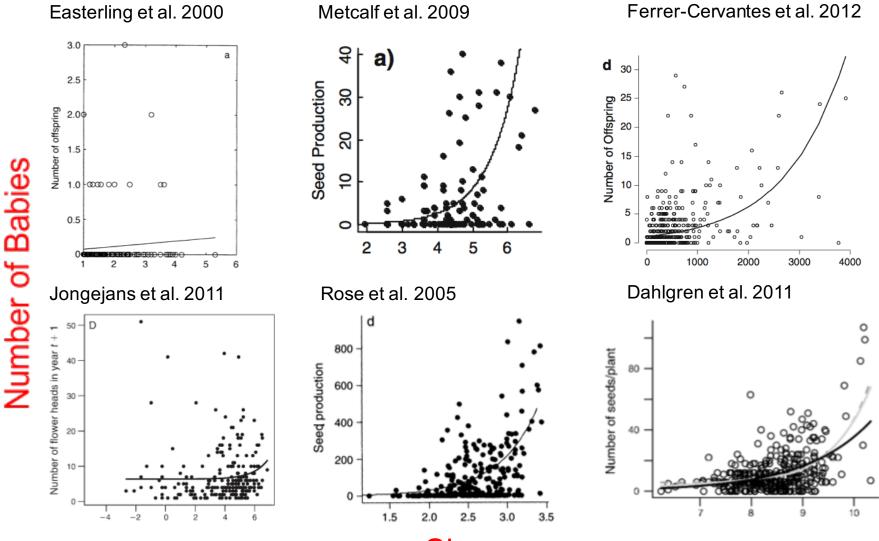


Size

Vital Rate Regression: Flowering $- p_{flower}(x)$

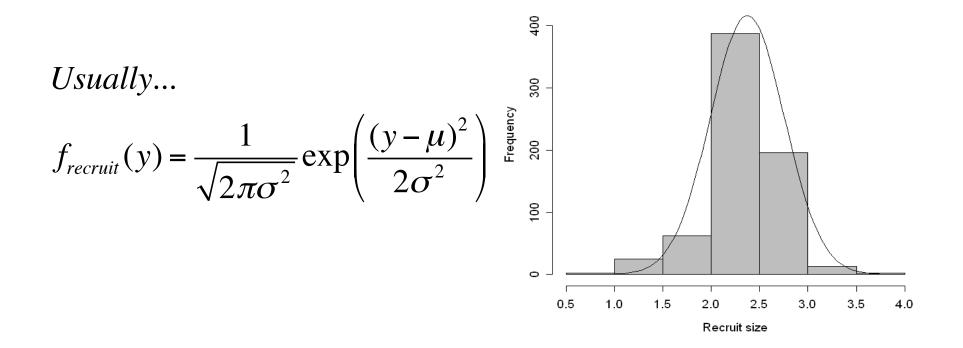


Vital Rate Regression: Fecundity – f_{seeds}(x)

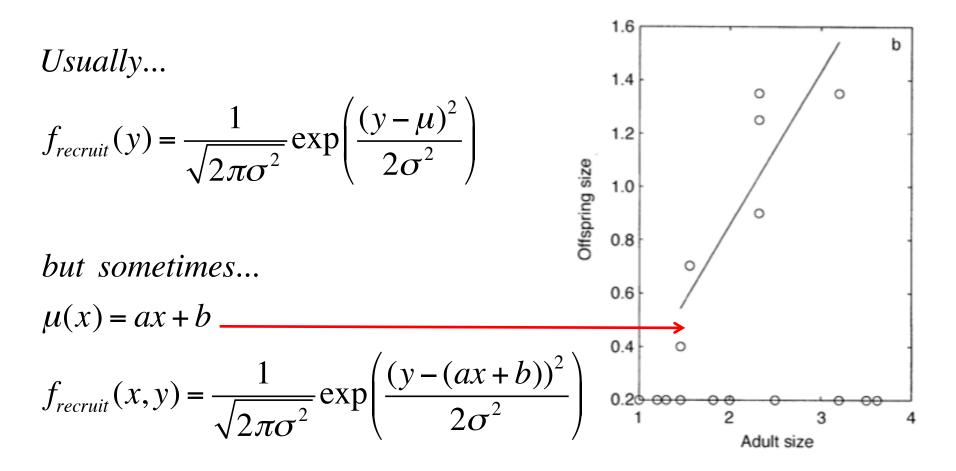


Size

Vital Rate Regression: Fecundity – $f_{recruit}(x,y)$

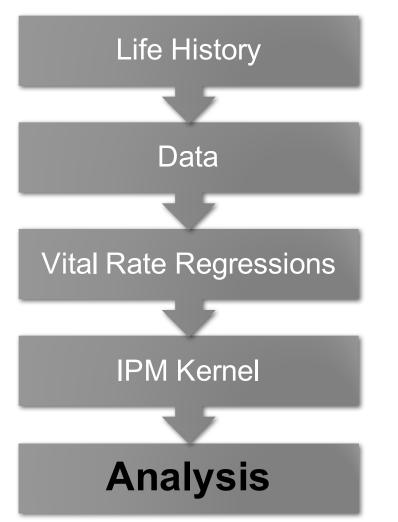


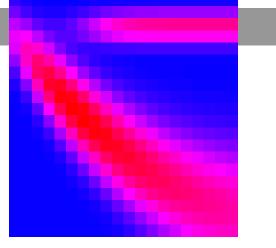
Vital Rate Regression: Fecundity – f_{recruit}(x,y)

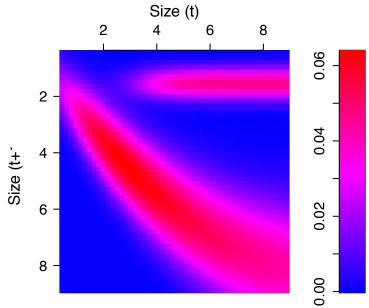


Easterling et al. 2000

Workflow



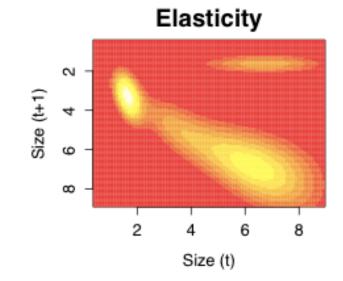


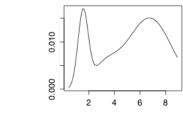


Analysis

- Want the same things from IPMs as from matrix models
 - Eigenvalues
 - Eigenfunction (vectors)
- Can do all the same analyses with IPMs as matrix models
 - Elasticity/sensitivity
 - Forward projections
 - Stochastic dynamics
 - Life table response experiments
 - Passage time, Life expectancy

• Etc...





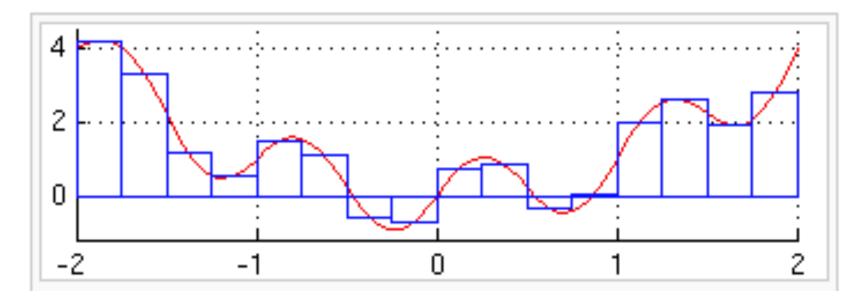
Full kernel function

 $size(y)_{t+1} = \int_{all \ sizes} [growth(size \ x \rightarrow y) + offspring(size \ x \rightarrow y)] size(x)_t dx$

$$n_{t+1}(y) = \int_{\Omega} \left[\log i(a_s x + b_s)^* \frac{1}{\sqrt{2\pi (a_{g\sigma} x + b_{g\sigma})^2}} \exp\left(\frac{(x - (a_{g\mu} x + b_{g\mu}))}{2(a_{g\sigma} x + b_{g\sigma})^2}\right) + \left| n_t(x) dx \right| \\ \exp(a_{f\#} x + b_{f\#})^* \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(x - (a_f x + b_f))^2}{2\sigma^2}\right) + \left| n_t(x) dx \right| \\ \left| n_t(x) dx \right|$$

Numerical integration

Midpoint rule



IPMs discretize for numerical integration

Numerical integration

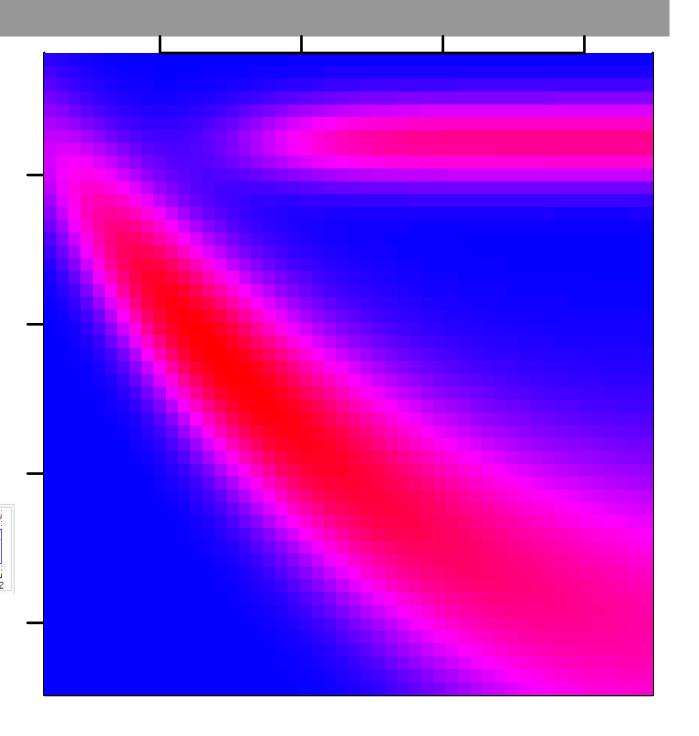
Evaluate kernel at midpoint of each cell to obtain a large matrix

n

2

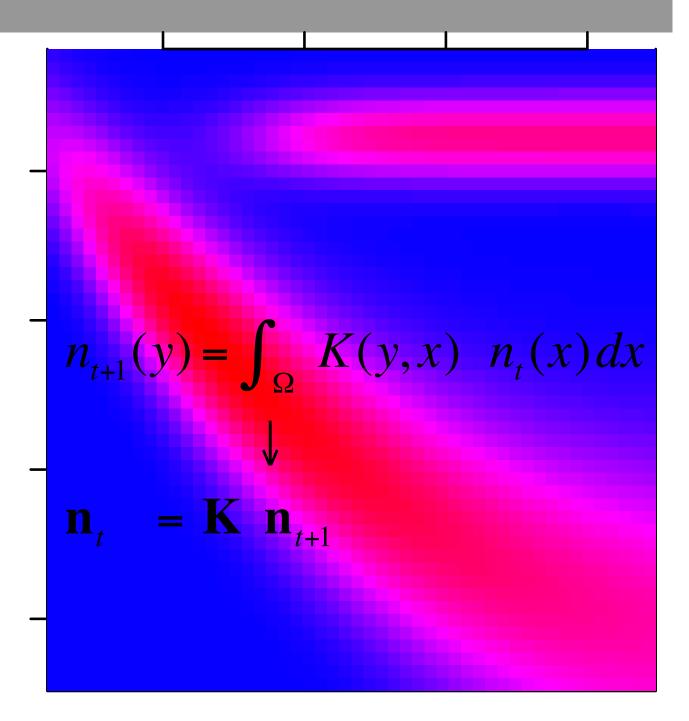
-2

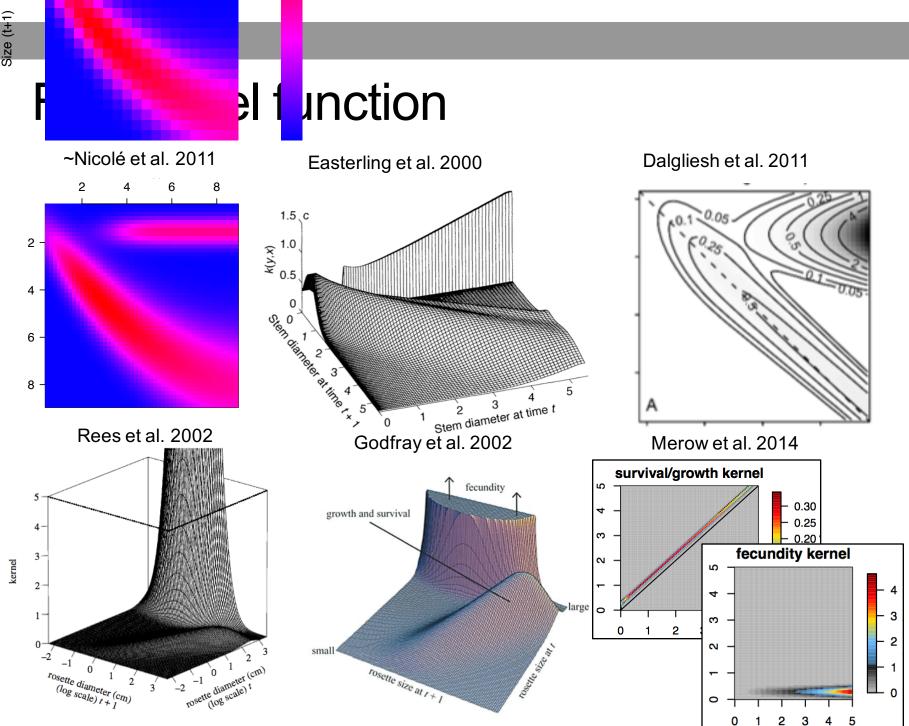
-1

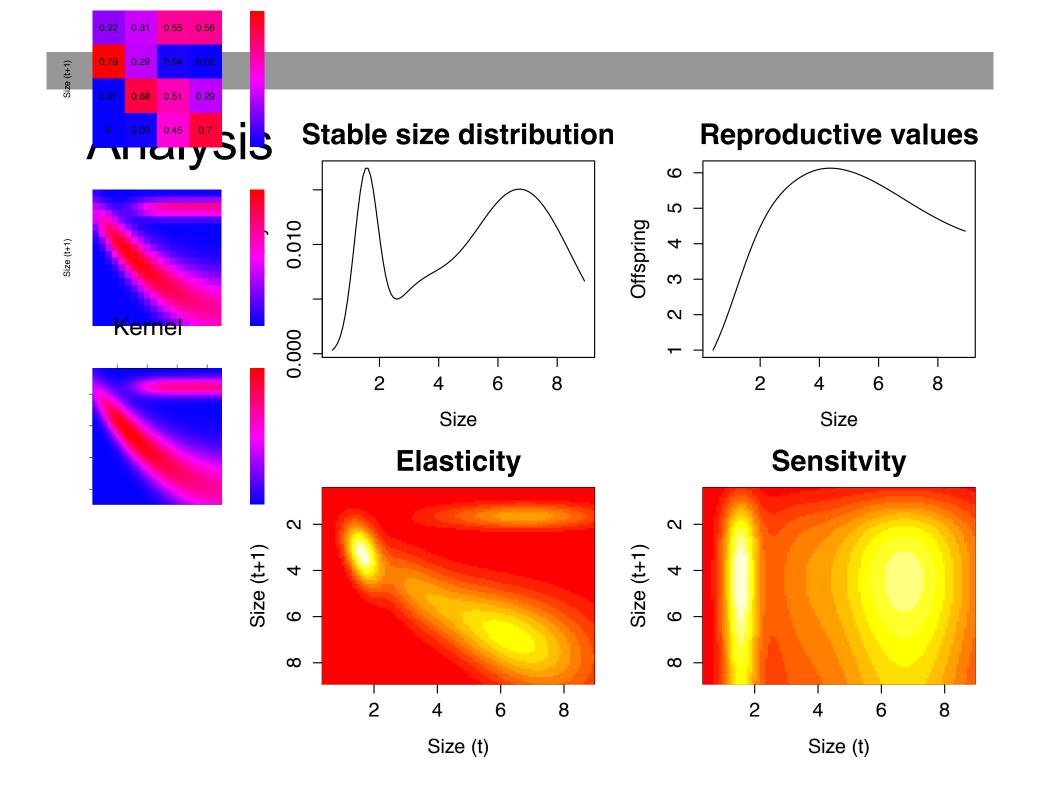


Numerical integration

Evaluate kernel at midpoint of each cell to obtain a large matrix



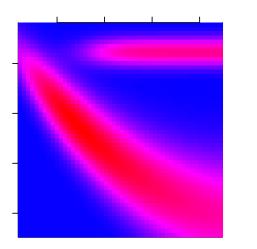




Summary - Why IPMs?

Process-based demography

Continuous stages

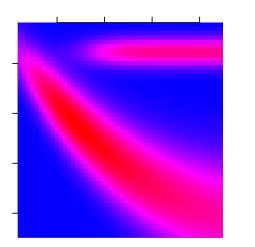


- Heterogeneity among individuals
- Decompose life history to desired level of detail
- Built on regressions and matrices

Summary - Why IPMs?

Process-based demography

Continuous stages



- Heterogeneity among individuals
- Decompose life history to desired level of detail
- Built on regressions and matrices

