# AN INTRODUCTION INTEGRAL PROJEC MODELS (IPMS)

**Cory Merow** 



# Methods in Ecology and Evolution



British Ecological Society

doi: 10.1111/2041-210X.12146

#### REVIEW

# Advancing population ecology with integral projection models: a practical guide

Cory Merow<sup>1,2</sup>\*, Johan P. Dahlgren<sup>3,4</sup>, C. Jessica E. Metcalf<sup>5,6</sup>, Dylan Z. Childs<sup>7</sup>, Margaret E.K. Evans<sup>8</sup>, Eelke Jongejans<sup>9</sup>, Sydne Record<sup>10</sup>, Mark Rees<sup>7</sup>, Roberto Salguero-Gómez<sup>11,12</sup> and Sean M. McMahon<sup>1</sup>

<sup>1</sup>Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD 21307 Edgewater, MD 21307-0028, USA; <sup>2</sup>Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; <sup>3</sup>Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden; <sup>4</sup>Department of Biology and Max-Planck Odense Center on the Biodemography of Aging, University of Southern Denmark, Odense, Denmark; <sup>5</sup>Department of Zoology, Oxford University, Oxford, UK; <sup>6</sup>Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; <sup>7</sup>Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK; <sup>8</sup>Laboratory of Tree-Ring Research and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA; <sup>9</sup>Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; <sup>10</sup>Harvard University, Harvard Forest, Petersham, MA, USA; <sup>11</sup>Max Planck Institute for Demographic Research, Evolutionary Demography laboratory, Rostock, Germany; and <sup>12</sup>Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Qld, Australia

# **IPMs**

Process-based demography:

- Accurate stage structure
- Size (t+1) Decompose life history to desired level
- Link vital rates to covariates
- Heterogeneity among individuals



0.79

Size (t+1)

0.29

0.68

0.51

0.45

0.29

0.7





# What is an IPM?

#### time t





# What is an IPM?









### Workflow











### Workflow







#### Data: Growth



#### Data: Survival

Survival curves for each plot



size





### Workflow









 $mean = b_0 + b_1 size + b_2 size^2$ 







### Workflow







• t = time

• x = size at t

• y = size at t+1

•  $n_t(x)$  = size distribution at t

•  $n_{t+1}(y)$  = size distribution at t+1

K(x,y) = full kernel







Size dictine care and a size (t) Size (t) 2 4 6 8 2 4 6 8 2 4 6 9 0 0 0 00 000 000

- t = time
- x = size at t
- y = size at t+1
- $n_t(x) = size distribution at t$
- n<sub>t+1</sub>(y) = size distribution at t+1

$$\mathbf{n}_{t+1} = \mathbf{A} \quad \mathbf{n}_t$$
$$n_{t+1}(y) = \int_{\substack{all \\ sizes}} K(y, x) \quad n_t(x) dx$$

- K(x,y) = full kernel
- P(x,y) = growth/survival kernel

(Matrix) (IPM)



- t = time
- x = size at t
- y = size at t+1
- $n_t(x) = size distribution at t$
- n<sub>t+1</sub>(y) = size distribution at t+1

- K(x,y) = full kernel
- P(x,y) = growth/survival kernel

 $\mathbf{n}_{t+1} = \mathbf{A} \quad \mathbf{n}_{t} \qquad (Matrix)$   $n_{t+1}(y) = \int_{all \\ sizes} K(y, x) \quad n_{t}(x) dx \qquad (IPM)$   $n_{t+1}(y) = \int_{all} \left[ P(x, y) + F(x, y) \right] n_{t}(x) dx$ 

• t = time

• x = size at t

y = size at t+1

•  $n_t(x) = size distribution at t$ 

n<sub>t+1</sub>(y) = size distribution at t+1

K(x,y) = full kernel

 $\mathbf{n}_{t+1} = \mathbf{A} \quad \mathbf{n}_{t} \qquad (Matrix)$   $n_{t+1}(y) = \int_{all sizes} K(y, x) \quad n_{t}(x) dx \qquad (IPM)$   $n_{t+1}(y) = \int_{all sizes} \left[ P(x, y) + F(x, y) \right] n_{t}(x) dx$ 

 $size(y)_{t+1} = \int_{all \ sizes} [growth(size \ x \rightarrow y) + offspring(size \ x \rightarrow y)] size(x)_t dx$ 

# We need functions for...

- Growth
- Survival
- Reproduction

# We have the option of splitting these in to finer detail if the data are available and the life history requires it

Life History  

$$n(y,t+1) = \int_{\Omega} \left[ P(x,y) + F(x,y) \right] n(x,t) dx$$

P(x,y) = (survival probability at size x) \* (growth from x to y)= s(x) \* g(x,y)

Life History  

$$n(y,t+1) = \int_{\Omega} \left[ P(x,y) + F(x,y) \right] n(x,t) dx$$

P(x,y) = (survival probability at size x) \* (growth from x to y)= s(x) \* g(x,y)

Life History  

$$n(y,t+1) = \int_{\Omega} \left[ P(x,y) + F(x,y) \right] n(x,t) dx$$

P(x,y) = (survival probability at size x) \* (growth from x to y)= s(x) \* g(x,y)

Life History  

$$n(y,t+1) = \int_{\Omega} \left[ P(x,y) + F(x,y) \right] n(x,t) dx$$

P(x,y) = (survival probability at size x) \* (growth from x to y)= s(x) \* g(x,y)

$$F(x,y) = (mean \# seeds of size x parent) * (establishment probability)(probability of size y offspring from size x parent) = f_{seeds}(x) * p_{estab} * f_{recruit}(y)$$









#### Vital Rate Regression: Growth -g(x,y)



# Vital Rate Regression: Survival - s(x)



Size

#### Vital Rate Regression: Flowering $- p_{flower}(x)$



### Vital Rate Regression: Fecundity – f<sub>seeds</sub>(x)



Size

### Vital Rate Regression: Fecundity – $f_{recruit}(x,y)$



#### Vital Rate Regression: Fecundity – f<sub>recruit</sub>(x,y)



Easterling et al. 2000

### Workflow







# Analysis

- Want the same things from IPMs as from matrix models
  - Eigenvalues
  - Eigenfunction (vectors)
- Can do all the same analyses with IPMs as matrix models
  - Elasticity/sensitivity
  - Forward projections
  - Stochastic dynamics
  - Life table response experiments
  - Passage time, Life expectancy

• Etc...





#### Full kernel function

 $size(y)_{t+1} = \int_{all \ sizes} [growth(size \ x \rightarrow y) + offspring(size \ x \rightarrow y)] size(x)_t dx$ 

$$n_{t+1}(y) = \int_{\Omega} \left[ \log i(a_s x + b_s)^* \frac{1}{\sqrt{2\pi (a_{g\sigma} x + b_{g\sigma})^2}} \exp\left(\frac{(x - (a_{g\mu} x + b_{g\mu}))}{2(a_{g\sigma} x + b_{g\sigma})^2}\right) + \left| n_t(x) dx \right| \\ \exp(a_{f\#} x + b_{f\#})^* \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(x - (a_f x + b_f))^2}{2\sigma^2}\right) + \left| n_t(x) dx \right| \\ \left| n_t(x) dx \right|$$

## Numerical integration

#### Midpoint rule



IPMs discretize for numerical integration

# Numerical integration

Evaluate kernel at midpoint of each cell to obtain a large matrix

n

2

-2

-1



# Numerical integration

Evaluate kernel at midpoint of each cell to obtain a large matrix









# Summary - Why IPMs?

Process-based demography

Continuous stages



- Heterogeneity among individuals
- Decompose life history to desired level of detail
- Built on regressions and matrices

# Summary - Why IPMs?

Process-based demography

Continuous stages



- Heterogeneity among individuals
- Decompose life history to desired level of detail
- Built on regressions and matrices

