#' --- #' title: "Community Network Analysis" #' author: "Naia Morueta-Holme" #' --- #' #' #' #'
#' #'

It appears you don't have a PDF plugin for this browser. #' No biggie... you can click here to #' download the PDF file.

#'
#'
#' #'

Download the PDF of the presentation

#' #' #' [ The R Script associated with this page is available here](`r output`). Download this file and open it (or copy-paste into a new script) with RStudio so you can follow along. #' #' # Setup ## ----message=F, warning=F------------------------------------------------ library(netassoc) #' #' ## Generate some random 'observed' data ## ------------------------------------------------------------------------ set.seed(1) # Number of m species nsp <- 10 # Number of n sites nsi <- 50 # Observed m x n community matrix (abundance or presence/absence) m_obs <- floor(matrix(rpois(nsp*nsi,lambda=5),ncol=nsi,nrow=nsp)) # "Force" some species associations to the observed community matrix m_obs[1,1:(nsi/2)] <- rpois(n=nsi/2,lambda=20) m_obs[2,1:(nsi/2)] <- rpois(n=nsi/2,lambda=20) #' #' ## What is the null expectation? ## ------------------------------------------------------------------------ # Null expected m x n community matrix (abundance or presence/absence) m_nul <- floor(matrix(rpois(nsp*nsi,lambda=5),ncol=nsi,nrow=nsp)) #' Note that here we are simply resampling the observed data preserving row and column sums, which is NOT recommended. Instead, we should use our expected null model of community assembly. #' #' #' ## Infer the species association network ## ------------------------------------------------------------------------ # What species co-occurrence patterns are more or less likely than expected under the null model? n <- make_netassoc_network(m_obs, m_nul, method="partial_correlation", args=list(method="shrinkage"), # for alternative estimators see ?partial_correlation p.method='fdr', numnulls=100, plot=TRUE, alpha=0.05) ## ------------------------------------------------------------------------ n$network_all