Inferring species associations from co-occurrence data

- Combining BIEN plots and occurrences

Step 1. Obtain observed and expected community data

Step 2. Calculate observed and null co-occurrence scores

Step 3. Calculate strength and direction of each association

Step 4. Threshold values to detect significant associations

Step 5. Represent association matrix as weighted network

Combining plots and occurrences

- 1009 FIA plots (abundance data)
- 139 tree species

- MaxEnt modelling for null:
 - BIEN occurrence data
 - "Standard" approach
- LOESS regression for null:
 - 5132 FIA plots

Testing for drivers of associations

Testing for drivers of associations

Main advantages of approach

- Spatially explicit null model:
 - Autocorrelation
 - Test deviations from a priori null expectation (e.g. broad scale drivers) based on independent
- Takes into account indirect species associations

With network metrics, can test for drivers

To learn more...

Ecography 39: 001-012, 2016

doi: 10.1111/ecog.01892

© 2015 The Authors. Ecography © 2015 Nordic Society Oikos

Subject Editor: Dominique Gravel. Editor-in-Chief: Miguel Araújo. Accepted 27 November 2015

A network approach for inferring species associations from co-occurrence data

Naia Morueta-Holme, Benjamin Blonder, Brody Sandel, Brian J. McGill, Robert K. Peet, Jeffrey E. Ott, Cyrille Violle, Brian J. Enquist, Peter M. Jørgensen and Jens-Christian Svenning

morueta-holme@berkeley.edu