

Combining data sources...

... is our only chance for general predictions

Missing processes

Some nice advances

- Presence Only + Abundance
 - Pagel et al. 2014 MEE
- Presence Only + Presence Absence:
 - Fithian et al. 2014 MEE
 - Dorazio 2014 GEB
- Joint SDMs
 - Harris 2015 MEE
 - Clark et al. 2014 Ecol. App
 - Fithian et al. 2014 MEE
- Presence-Only + Map
 - Merow et al. 2016 GEB
 - Merow et al. 2017 GEB
- Demography + Occurrence:
 - Pagel and Schurr 2012 GEB

- Machine learning -> flexible models for exploration
- Stay as close to the null model as possible
- Update null model based on data

- Machine learning -> flexible models for exploration
- Stay as close to the null model as possible
- Update null model based on data

- Machine learning -> flexible models for exploration
- Stay as close to the null model as possible
- Update null model based on data

- Machine learning -> flexible models for exploration
- Stay as close to the null model as possible
- Update null model based on data

Spatially explicit prior information

Expert
Dispersal
Native range
Related species

Priors based on other models

What is an offset?

- When sampling abundance (which entails a Poisson model), twice as much sampling effort should yield twice as many individuals
- Sampling effort = Offset
- A way to say 'more samples are expected here'

Expert Maps

How can we translate this to a prior/offset?

How much more likely is presence inside vs outside?

By combining their powers....

- High resolution
- Links to Environment
- Suitability
- Large data bases BUT...
- Biased sampling

- Field experience
- Low bias
- Range edges
- Non-climate processes

BUT...

- Coarse resolution
- No explicit environment
- False presence
- Not updated
- Not reproducible
- Binary

Other useful Priors

- Expert maps
- Sampling Bias
- Native range info
 - Realized vs
 - Potential Distributions
- Phylogenetic constraints
- Combining different types of occurrence data

Merow et al. GEB 2016

