Forecasting, Extrapolation and Uncertainty

MY HOBBY: EXTRAPOLATING

http://xkcd.com

Occurrence patterns: starting point

Maxent Guide:Merow et al., 2013, EcographyMaxent v. Maxlike:Merow et al., 2014, MEEComplexity:Merow et al., 2014, EcographyMinxent:Merow et al., 2016, GEBExpert Maps:Merow et al., 2017, GEB

Future Forecasts

Salix geyeriana

Outline

Case study

Types of extrapolation

- Environment*
- Space
- Time

Uncertainty

- Modeling decisions
- Parameters
- Future Scenarios

Where can biology provide guidance?

Case Study

Overviev

Map Satellite

Projected regional distribution losses of terrestrial vertebrates under different climate and land-use change scenarios

<u>Goals</u>

Forecast potential range loss for ~20k

How do

land use change and climate change

contribute to

EXPECTED RANGE LOSS this century?

Informing IPBES

Science and Policy for People and Nature

International Panel on Biodiversity and Ecosystem Ser

'provides policymakers with **objective scientific assessments** about the state of knowledge regarding the planet's **biodiversity, ecosystems** and the benefits they provide to people'

Informing IPBES

New Results

View current version of this article

A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios

HyeJin Kim, Isabel M.D. Rosa, Rob Alkemade, Paul Leadley, George Hurtt, Alexander Popp, Detlef van Vuuren, Peter Anthoni, Almut Arneth, Daniele Baisero, Emma Caton, Rebecca Chaplin-Kramer, Louise Chini, Adriana De Palma, Fulvio Di Fulvio, Moreno Di Marco, Felipe Espinoza, Simon Ferrier, Shinichiro Fujimori, Ricardo E. Gonzalez, Maya Gueguen, Carlos Guerra, Mike Hartfoot, Thomas D. Harwood, Tomoko Hasegawa, Vanessa Haverd, Petr Havlik, Stefanie Hellweg, Samantha L.L. Hill, Akiko Hirata, Andrew J. Hoskins, Jan H. Janse, Walter Jetz, Justin A. Johnson, Andreas Krause, David Leclere, Ines S. Martins, Tetsuya Matsui, Cory Merow, Michael Obersteiner, Haruka Ohashi, Benjamin Poulter, Andy Purvis, Benjamin Quesada, Carlo Rondinini, Aafke Schipper, Richard Sharp, Kiyoshi Takahashi, Wilfried Thuiller, Nicolas Titeux, Piero Visconti, Christopher Ware, Florian Wolf, Henrique M. Pereira

doi: https://doi.org/10.1101/300632

THE SHARED SOCIO-ECONOMIC PATHWAYS (SSPs)

Socio-economic challenges for mitigation

Socio-economic challenges for adaptation

O'Neill et al. 2017 Glob. Env. Change

Land Use Harmonization 2 Project: luh.umd.edu

THE SHARED SOCIO-ECONOMIC PATHWAYS (SSPs)

Scenarios of:

- Demographics
- Human development
- Economy and lifestyle
- Policies and institutions
- Technology
- Environment/natural resources

Inputs

- Expert Maps
 - ~20k amphibians, mammals and birds
- Species habitat preferences
 - forest, agriculture, urban, etc.
- Present and Future Land use maps
 - .25 degree
- Present and Future Climate
- Maxnet
- Grain of predictions: .25 degree

WorldClim - Global Climate Data Free climate data for ecological modeling and GIS

Partitioning land use and climate losses

Partitioning land use and climate losses

Partitioning land use and climate losses

Caveats/Decisions

- Not many options for looking at all species
- Expert maps OK at coarse grain (0.25 degree -> Country)
- No extrapolation beyond the current expert map
 - No movement
 - No adaptation

(Biased toward species you can build a model for...)

(Biased toward species you can build a model for...)

Consistent trends in expected losses...

- Amphibians
 Mammals
 - Dirdo
- Birds

Climate >> Land Use

Climate has biggest effect on amphibians

Amphibians

- Mammals
- Birds

Local loss

In places that are already hot, or should be cold

How does global loss compare to local loss?

How does global loss compare to local loss?

Contribution to climate

Global loss

Next steps

- Targeted conservation strategies
 - Low local loss, high global loss, low climate contribution (low risk)
 - High local loss, high global loss, low climate contribution (high risk, high reward)
- Anticipate changing stewardship
- Serve to scientific community
- Serve for policy

contact us login register

Putting biodiversity on the map

Conclusions

Climate >> land use

Environmental change alone doesn't predict loss

Priorities for loss

Environmental Extrapolation

What assumptions were made?

Thullier et al. 2004

but without setting probability values equal to zero outside the environmental limits used to calibrate models for the restricted model.

What can we do about it?

- Don't do it
- Get more data in the range you want to predict
- Cross validation

Cross Validation

Dependence structure	Parametric solution	Blocking	Blocking illustration
Spatial	Spatial models (e.g. CAR, INLA, GWR)	Spatial	
Temporal	Time-series models (e.g. ARIMA)	Temporal	MV MU M
Grouping	Mixed effect models (e.g. GLMM)	Group	S
Hierarchical / Phylogenetic	Phylogenetic models (e.g. PGLS)	Hierarchical	

Roberts et al. 2016, Ecography

What can we do about it?

- Don't do it
- Get more data in the range you want to predict
- Cross validation
- Constrain it

What can we do about it?

- Don't do it
- Get more data in the range you want to predict
- Cross validation
- Constrain it
- Make a heuristic argument that its ok

What can we do about it?

- Don't do it
- Get more data in the range you want to predict
- Cross validation
- Constrain it
- Make a heuristic argument that its ok
- Make a mechanistic model
- Predict another emergent pattern to validate the extrapolation with a different type of data

Spatial Extrapolation

Two cultures of SDMing

Bumps attributed to environmental response actually arise in geographic space

Overfitting

True Suitability

Cold (Suitable) Warm (Unsuitable)

Predicted Suitability

Bayesian Spatial models

 $logit(p_i) = X_i\beta + w_i$ Spatial random intercepts

ĸ	t (7	
÷	× ↓ ⊭ →cell i← z ↑ ⊾	→	
2	÷	2	

R package: hSDM

Spatial prediction

Spatial prediction

Temporal Extrapolation

Temporal extrapolation

Correlative models can only take you so far....

Forecasting

And the need for mechanism...

http://xkcd.com

Uncertainty

- Modeling decisions
- Parameters
- Future Scenarios

Modeling decisions: algorithms

Figure 1. Examples of alternative approaches to analysing ensemble forecasts using artificial data projected onto the map of Africa: (a) Individual results from five hypothetical bioclimatic models (shown by coloured lines) predicting the area occupied by a key species under a climate change scenario (no combination of the ensemble forecast is performed); (b) a bounding box showing the area where at least one (purple) or all models (green) predict species presence in the future, and a consensus forecast (blue) showing the area where at least half the models (the median) forecast species presence; (c) a frequency histogram, showing the number of models (1–5 forecasting the presence of the species at any point; and (d) a probability density function showing the likelihood of species presence estimated from a large ensemble

Modeling Decisions: Binary Maps

Determining the right threshold is dodgy with **presence – only** data

Merow et al, pretty soon

Modeling Decisions: Binary vs. Trinary Maps

Merow et al, pretty soon

Parameter Uncertainty

Parameter Uncertainty

Merow, et al. 2017, PNAS

Future scenarios

Weather Climate Land Use Disperal

SSP5 RCP85 NOREGAIN 2050

Concluding thoughts

Types of extrapolation

- Environment
- Space
- Time

Uncertainty

- Modeling decisions
- Parameters
- Future Scenarios

Identify the type

Reduce, report