Forecasting, Extrapolation and Uncertainty

MY HOBBY: EXTRAPOLATING

http://xkcd.com

Occurrence patterns: starting point

Occurrence

Maxent Guide: Merow et al., 2013, Ecography Maxent v. Maxlike: Merow et al., 2014, MEE Complexity: Minxent: Merow et al., 2014, Ecography Expert Maps: Merow et al., 2016, GEB Merow et al., 2017, GEB

Future Forecasts

Outline

Case study

Types of extrapolation

- Environment*
- Space
- Time

Where can
biology provide guidance?

Uncertainty

- Modeling decisions
- Parameters
- Future Scenarios

Case Study

Projected regional distribution losses of terrestrial vertebrates under different climate and land-use change scenarios

Goals

Forecast potential range loss for ~20k

How do

land use change and climate change contribute to

 EXPECTEDRANGE LOSS this century?
Informing IPBES

Science and Policy
for People and Nature

International Panel on Biodiversity and Ecosystem Ser

'provides policymakers with objective scientific assessments about the state of knowledge regarding the planet's biodiversity, ecosystems and the benefits they provide to people'

Informing IPBES

bioR χ iv

THE PREPRINT SERVER FOR BIOLOGY

A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios

Hyejin Kim, Isabel M.D. Rosa, Rob Alkemade, Paul Leadley, George Hurtt, Alexander Popp, Detlef van Vuuren, Peter Anthoni, Almut Arneth, Daniele Baisero, Emma Caton, Rebecca Chaplin-Kramer, Louise Chini, Adriana De Palma, Fulvio Di Fulvio, Moreno Di Marco, Felipe Espinoza, Simon Ferrier, Shinichiro Fujimori, Ricardo E. Gonzalez, Maya Gueguen, Carlos Guerra, Mike Hartfoot, Thomas D. Harwood, Tomoko Hasegawa, Vanessa Haverd, Petr Havlik, Stefanie Hellweg, Samantha L.L. Hill, Akiko Hirata, Andrew J. Hoskins, Jan H. Janse, Walter Jetz, Justin A. Johnson, Andreas Krause, David Leclere, Ines S. Martins, Tetsuya Matsui, Cory Merow, Michael Obersteiner, Haruka Ohashi, Benjamin Poulter, Andy Purvis, Benjamin Quesada, Carlo Rondinini, Aafke Schipper, Richard Sharp, Kiyoshi Takahashi, Wilfried Thuiller, Nicolas Titeux, Piero Visconti, Christopher Ware, Florian Wolf, Henrique M. Pereira
doi: https://doi.org/I0.1IOI/300632

THE SHARED SOCIO-ECONOMIC PATHWAYS (SSPs)

Socio-economic challenges
for adaptation
O'Neill et al. 2017 Glob. Env. Change
Land Use Harmonization 2 Project: luh.umd.edu

THE SHARED SOCIO-ECONOMIC PATHWAYS (SSPs)

From O'Neill et al. 2017 Glob. Env. Change

Inputs

- Expert Maps
- ~20k amphibians, mammals and birds
- Species habitat preferences
- forest, agriculture, urban, etc.
- Present and Future Land use maps
- 25 degree
- Present and Future Climate
- Maxnet
- Grain of predictions: 25 degree

Partitioning land use and climate losses

Partitioning land use and climate losses

Partitioning land use and climate losses

Caveats/Decisions

- Not many options for looking at all species
- Expert maps OK at coarse grain (0.25 degree -> Country)
- No extrapolation beyond the current expert map
- No movement
- No adaptation

Expected losses...

(Biased toward species you can build a model for...)

- Amphibians
\square Mammals
\square Birds

Expected losses...

(Biased toward species you can build a model for...)

- Amphibians
\square Mammals
\square Birds

Consistent trends in expected losses...

- Amphibians
\square Mammals
\square Birds

Climate >> Land Use

- Climate has biggest effect on amphibians
- Amphibians
\square Mammals
\square Birds

Local loss

In places that are already hot, or should be cold

How does global loss compare to local loss?

\section*{| ∞ |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |}

How does global loss compare to local loss?

Contribution to climate

Global loss

Proportional contribution of climate
SSP2 RCP45 2050 CLIMATE

Next steps

- Targeted conservation strategies
- Low local loss, high global loss, low climate contribution (low risk)
- High local loss, high global loss, low climate contribution (high risk, high reward)
- Anticipate changing stewardship
- Serve to scientific community
- Serve for policy

Logged in as: Walter Jetz ~ en de es fr zh

Species Home
Summary Map
Detailed Map
Species

Shared Socio-Economic Pathway
SSP 2 (RCP 4.5) v

Projection Year (Map)
2050 V

Habitat Regain Assumption
No-regain
Regain

Get habitat projection
Suitable elevation: -500 to 1300 meters
Suitable tree cover: 75 to 100\%

Suitable land-cover categories:

Forest Non-Forest Managed Land Urban Crop

Biodiversity Patterns

Conclusions

Climate >> land use

Environmental change alone doesn't predict loss

Priorities for loss

Environmental Extrapolation

What assumptions were made?
\square

Extrapolation

Thullier et al. 2004

Fig. 2. Projections of response curve of Quercus crenata on larger spectrum of climate data at finer resolution. (a) The three models setting probability values equal to zero outside the environmental limits used to calibrate models; (b) Same as (a) but without setting probability values equal to zero outside the environmental limits used to calibrate models for the restricted model.

Forecasting

noBias

What can we do about it?

- Don't do it
- Get more data in the range you want to predict
- Cross validation

Cross Validation

Dependence structure	Parametric solution	Blocking	Blocking illustration
Spatial	Spatial models (e.g.CAR, INLA, GWR)	Spatial	
Temporal	Time-series models (e.g. ARIMA)	Temporal	
Grouping	Mixed effect models (e.g. GLMM)	Group	
Hierarchical $/$			
Phylogenetic	Phylogenetic models (e.g. PGLS)	Hierarchical	

Roberts et al. 2016, Ecography

What can we do about it?

- Don't do it
- Get more data in the range you want to predict
- Cross validation
- Constrain it

What can we do about it?

- Don't do it
- Get more data in the range you want to predict
- Cross validation
- Constrain it
- Make a heuristic argument that its ok

What can we do about it?

- Don't do it
- Get more data in the range you want to predict
- Cross validation
- Constrain it
- Make a heuristic argument that its ok
- Make a mechanistic model
- Predict another emergent pattern to validate the extrapolation with a different type of data

Spatial Extrapolation

Two cultures of SDMing

Bumps attributed to environmental response actually arise in geographic space

Spatial Aggregation and Overfitting

Overfitting

True Suitability

Predicted Suitability

Bayesian Spatial models

$\operatorname{logit}\left(p_{i}\right)=X_{i} \beta+w_{i} \quad$ Spatial random intercepts

R package: hSDM

Spatial prediction

Spatial prediction

Temporal Extrapolation

Temporal extrapolation

Forecasting

And the need for mechanism...

SOUNDS LIKE THE CLASS HELPED.

http://xkcd.com

Correlative

Mechanistic

Uncertainty

- Modeling decisions
- Parameters
- Future Scenarios

Modeling decisions: algorithms

Modeling decisions: ensembles

$\overline{\text { TRENDS in Ecology \& Evolution }}$

Figure 1. Examples of alternative approaches to analysing ensemble forecasts using artificial data projected onto the map of Africa: (a) Individual results from five hypothetical bioclimatic models (shown by coloured lines) predicting the area occupied by a key species under a climate change scenario (no combination of the ensemble forecast is performed); (b) a bounding box showing the area where at least one (purple) or all models (green) predict species presence in the future, and a consensu forecast (blue) showing the area where at least half the models (the median) forecast species presence; (c) a frequency histogram, showing the number of models ($1-5$ forecasting the presence of the species at any point; and (d) a probability density function showing the likelihood of species presence estimated from a large ensemble

Modeling Decisions: Binary Maps

Determining the right threshold is dodgy with presence - only data
Merow et al, pretty soon

Modeling Decisions: Binary vs. Trinary Maps

Parameter Uncertainty

Occurrence probability

Parameter Uncertainty

Merow, et al. 2017, PNAS

Future scenarios

SSP2 RCP45 NOREGAIN 2050

Weather
Climate
Land Use
Disperal

Concluding thoughts

Types of extrapolation

- Environment
- Space
- Time

Uncertainty

- Modeling decisions
- Parameters
- Future Scenarios

